I B.Tech - I Semester - Regular Examinations - December - 2019

ENGINEERING MATHEMATICS - I
 (Common for CIVIL, EEE, ME, ECE, CSE, IT)

Duration: 3 hours
Max. Marks: 70
Note: 1. This question paper contains two Parts A and B.
2. Part-A contains 5 short answer questions. Each Question carries 2 Marks.
3. Part-B contains 5 essay questions with an internal choice from each unit. Each question carries 12 marks.
4. All parts of Question paper must be answered in one place

PART - A

1. a) Define diagnolization.
b) Write down the Schlomilch - Roche's form of remainder of Taylors theorem.
c) If $u=x \sin y ; v=y \sin x$ then find $\frac{\partial(u, v)}{\partial(x, y)}$
d) Evaluate $\int_{0}^{3} \int_{-x}^{x} x y d y d x$
e)

Evaluate $\iint_{0} \int_{0} x y z d x d y d z$

> PART - B
> UNIT - I
2. a) Find the rank
$\left\{\begin{array}{llll}1 & 2 & 3 & 4 \\ 3 & 4 & 1 & 2 \\ 4 & 3 & 1 & 2\end{array}\right)$
b) Find the value of k such that the system of equations

$$
x+k y+3 z=0 ; 4 x+3 y+k z=0 ; \quad 2 x+y+2 z=0
$$

has non trivial solution.

OR

3. a) Reduce the quadratic form
$6 x^{2}+3 y^{2}+3 z^{2}-4 x y-2 y z+4 z x$ to canonical form.
6 M
b) Verify Caley-Hamilton theorem and hence find A^{-1}.

$$
A=\left(\begin{array}{ccc}
1 & 2 & 2 \\
0 & 2 & 1 \\
-1 & 2 & 2
\end{array}\right)
$$

UNIT - II

4. a) For $x>0$, show that $1+x<e^{x}<1+x e^{x}$.
b) Verify Rolle's Theorem for $\mathrm{f}(\mathrm{x})=\frac{\operatorname{Sin} x}{e^{x}}, \mathrm{x}$ in $[0, \pi]$. OR
5. a) Expand e^{x} by maclaurin's series.
b)

Obtain the Taylor's series expansion for
$f(x)=\log (\cos x)$ about the point ${ }^{x=\pi / 3}$ upto the $4^{\text {th }}$ degree term.

UNIT-III

6. a) If $u=x \log x y$, where $x^{3}+y^{3}+3 x y=1$. Find $d u / d x$.
b) Verify the following functions are functionally dependent and also find the relation between them

$$
u=\frac{x^{2}-y^{2}}{x^{2}+y^{2}} \quad \text { and } \quad v=\frac{2 x y}{x^{2}+y^{2}}
$$

OR

7. a) Find the minimum value of $x^{2}+y^{2}+z^{2}$ given that $x y z=a^{3} .6 M$
b)

$$
\text { If } x+y+z=u, y+z=u v, z=u v w \text { then find }{ }^{J}\left(\frac{x, y, z}{u, v, w}\right)
$$

UNIT - IV

8. a) Evaluate by change of order of integration

$$
\int_{0}^{\infty} \int_{0}^{x} x e^{\frac{-x^{2}}{y}} d y d x
$$

b) Evaluate $\iint r^{2} d r d \theta$ over the area bounded between the circles $r=a \sin \theta$ and $r=2 a \sin \theta$
OR
9.
a) Evaluate $\iint\left(x^{2}+y^{2}\right) d x d y$ over the ellipse $2 x^{2}+y^{2}=1$
b) Evaluate $\int_{0}^{\infty} \int_{0}^{\infty} e^{-\left(x^{2}+y^{2}\right)} d x d y$

UNIT - V

10. a)

Evaluate $\iiint_{V} \frac{d x d y d z}{\left(x^{2}+y^{2}+z^{2}\right)^{3 / 2}}$ where v is the region
bounded between the sphere $x^{2}+y^{2}+z^{2}=a^{2}$ and

$$
x^{2}+y^{2}+z^{2}=b^{2},(\mathrm{a}>\mathrm{b})
$$

b) Determine the volume bounded by the cylinder
$x^{2}+y^{2}=4$ and the planes $y+z=4$ and $z=0$
OR
11. a)

Evaluate $\iiint_{v} d x d y d z$, where v is the volume bounded by the planes $\mathrm{x}=0, \mathrm{y}=0, \mathrm{z}=0, \mathrm{z}=1$ and the cylinder $x^{2}+y^{2}=1$ by changing into cylindrical polar coordinates.
b)

$$
\iiint d x d y d z
$$

Evaluate where v is the finite region of sphere formed by the planes $\mathrm{x}=0, \mathrm{y}=0, \mathrm{z}=0$ and
$2 x+3 y+4 z=12$

